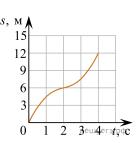
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Абитуриент провел поиск информации в сети Интернет о наиболее скоростных военных самолетах в мире. Результаты поиска представлены в таблице.

Nº	Название самолёта	Максимальная скорость		
1	МиГ-31	3000 км/ч		
2	F-111	44,2 км/мин		
3	SR-71	9,80 · 10 ⁴ см/с		
4	Cy-24	$2,45 \cdot 10^3$ км/ч		
5	F-15	736 м/с		


Самый скоростной самолет указан в строке таблицы, номер которой:

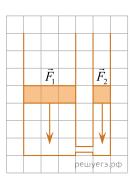
1) 1 2) 2 3) 3 4) 4 5) 5

2. Звуковой сигнал, посланный эхолокатором в момент времени t_1 =0 с, отразился от препятствия, возвратился обратно в момент времени t_2 = 3,42 с. Если модуль скорости распространения звука в воздухе υ = 340 м/c, то расстояние L от локатора до препятствия равно:

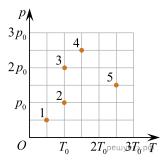
1) 100 m 2) 224 m 3) 475 m 4) 581 m 5) 649 m

3. На рисунке приведён график зависимости пути s, пройденного телом при прямолинейном движении с постоянным ускорением, от времени t. Модуль ускорения a тела равен:

1) 2 m/c^2 ; 2) 3 m/c^2 ; 3) 4 m/c^2 ; 4) 5 m/c^2 ; 5) 6 m/c^2 .

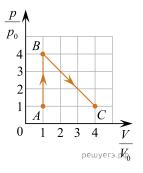

4. Плотность вещества камня массы m=20 кг составляет $\rho_1=2.5\cdot 10^3$ кг/м 3 . Чтобы удержать камень в воде ($\rho_2=1.0\cdot 10^3$ кг/м 3), необходимо приложить силу, модуль F которой равен:

1) 0,30 кН 2) 0,24 кН 3) 0,20 кН 4) 0,12 кН 5) 0,10 кН


5. Пять вагонов, сцепленных друг с другом и движущихся со скоростью, модуль которой $v_0=3,5\,\frac{\mathrm{M}}{\mathrm{C}},$ столкнулись с двумя неподвижными вагонами. Если массы всех вагонов одинаковы, то после срабатывания автосцепки модуль их скорости v будет равен:

1)
$$1,0 \frac{M}{c}$$
 2) $1,5 \frac{M}{c}$ 3) $2,0 \frac{M}{c}$ 4) $2,5 \frac{M}{c}$ 5) $3,0 \frac{M}{c}$

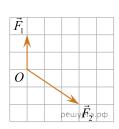
6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы $F_2=3$ H, то для удержания системы в равновесии модуль силы F_1 должен быть равен:


7. На p-T диаграмме изображены различные состояния идеального газа. Состояние с наибольшей концентрацией n_{\max} молекул газа обозначено цифрой:

5) 27 H

8. При изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа изменилось от $p_1=130~{\rm k\Pi a}$ до $p_2=140~{\rm k\Pi a}$. Если начальная температура газа $T_1=325~{\rm K}$, то конечная температура T_2 газа равна:

9. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние C (см. рис.). Значения внутренней энергии U газа в состояниях A, B, C связаны соотношением:

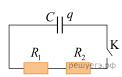

1)
$$U_A>U_B>U_C$$
 2) $U_B>U_A>U_C$ 3) $U_B=U_C>U_A$ 4) $U_B>U_C>U_A$ 5) $U_A=U_C>U_B$

10. Установите соответствие между прибором и физической величиной, которую он измеряет:

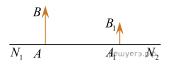
	А. Барометр	1) электрический заряд			
	Б. Электрометр	Электрометр 2) мощность тока			
Ī		3) атмосферное давление			
) A1I	53 2) A253	3) A261 4) A361 5) A	А ЗБ2		

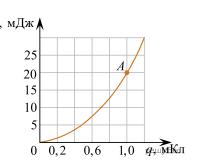
11. Тело движется равноускоренно в положительном направлении оси Ox. В момент начала отсчёта времени $t_0=0$ с проекция скорости тела $v_{0x}=4,0$ м/с. Если проекция ускорения тела на ось $a_x=4,0$ м/с 2 , то проекция перемещения Δr_x тела за шестую секунду равна ... м.

12. На покоящуюся материальную точку O начинают действовать две силы \vec{F}_1 и \vec{F}_2 (см. рис.), причём модуль первой силы $F_1=6~{
m H}$. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой F_3 равен ... ${
m H}$.


- 13. Однородная льдина $\left(\rho_1=900\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$ в форме прямоугольного параллелепипеда с площадью основания S=1,0 м 2 и толщиной h=34 см плавает в воде $\left(\rho_2=1000\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$. На льдину положили камень $\left(\rho_3=2200\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$. Если камень погрузился в воду на половину своего объёма, а льдина погрузилась в воду полностью, то объём V камня равен ... дм 3 .
- **14.** На невесомой нерастяжимой нити длиной l=72 см висит небольшой шар массой M=52 г. Пуля массой m=8 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...**м/с**.
- **15.** При абсолютной температуре $T=290~{\rm K}$ в сосуде находится газовая смесь, состоящая из водорода, количество вещества которого $\upsilon_1=1,5~{\rm моль},$ и кислорода, количество вещества которого $\upsilon_2=0,60~{\rm моль}.$ Если давление газовой смеси $p=126~{\rm k\Pi a},$ то объем V сосуда равен ... л.
- **16.** Значения плотности $\rho_{\rm H}$ насыщенного водяного пара при различных температурах t представлены в таблице. Если в одном кубическом метре комнатного воздуха при температуре $t_0 = 20$ °C содержится m = 11,2 г водяного пара, то чему равна относительная влажность ϕ воздуха в комнате? Ответ приведите в процентах..

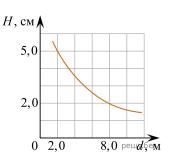
t, °C	16	17	18	19	20
$\rho_{\rm H}$, $\Gamma/{ m M}^3$	13,6	14,5	15,4	16,3	17,3


- 17. Идеальный одноатомный газ, количество вещества ν которого оставалось постоянным, при изобарном нагревании получил количество теплоты Q=12 кДж при этом объем газа увеличился в k=1,2 раза. Если начальная температура газа $t_1=15$ °C, то количество вещества ν равно ... моль.
- **18.** На оси Ox в точке с координатой x_0 находится неподвижный точечный заряд. К нему приближается другой точечный заряд, движущийся вдоль оси Ox. Если при изменении координаты движущегося заряда от $x_1 = 95\,$ мм до $x_2 = 55\,$ мм модуль силы взаимодействия зарядов изменился от $F_1 = 3,0\,$ мкН до $F_2 = 27\,$ мкН, то чему равна координата x_0 неподвижного заряда? Ответ приведите в миллиметрах.
- **19.** На рисунке изображены концентрические окружности радиусами r_1 и r_2 , в центре которых находится неподвижный точечный заряд Q. Точечный заряд q=1,5 нКл перемещали из точки 1 в точку 2 по траектории, показанной на рисунке сплошной жирной линией. Если радиусы окружностей $r_1=2,1$ см и $r_2=4,2$ см, а работа, совершённая электростатическим полем заряда Q, равна A=18 мкДж, то величина заряда Q равна ... нКл.


- **20.** Две частицы массами $m_1=m_2=0,400\cdot 10^{-12}$ кг, заряды которых $q_1=q_2=1,00\cdot 10^{-10}$ Кл, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние l=100 см между частицами остаётся постоянным. Модули скоростей частиц $\upsilon_1=\upsilon_2=25,0$ $\frac{\rm M}{c}$, а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.
- **21.** К источнику переменного напряжения, напряжение на клеммах которого изменяется по гармоническому закону, подключена электрическая плитка, потребляющая мощность $P=350~\rm Bt$. Если действующее значение силы тока в цепи $I_{\rm д}=9,0~\rm A$, то амплитудное значение напряжения U_0 на плитке равно ... **B**.
- **22.** На рисунке представлена схема электрической цепи, состоящей из конденсатора, ключа и двух резисторов, сопротивления которых $R_1 = 1$ МОм и $R_2 = 2$ МОм. Если электрическая емкость конденсатора C = 1 нФ, а его заряд q = 6 мкКл, то количество теплоты Q_1 которое выделится в резисторе R_1 при полной разрядке конденсатора после замыкания ключа K, равно ... мДж.

23. Стрелка AB высотой H=4,0 см и её изображение A_1B_1 высотой h=2,0 см, формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=16$ см, то модуль фокусного расстояния |F| линзы равен ... см.

24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В.


- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31.7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{H\cdot c}{M}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{M}{c}$.
- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

